Particle Swarm Optimizer with Aging Operator for Multimodal Function Optimization
نویسندگان
چکیده
منابع مشابه
Multi-Species Particle Swarm Optimizer for Multimodal Function Optimization
This paper introduces a modified particle swarm optimizer (PSO) called the Multi-Species Particle Swarm Optimizer (MSPSO) for locating all the global minima of multimodal functions. MSPSO extend the original PSO by dividing the particle swarm spatially into a multiple cluster called a species in a multi-dimensional search space. Each species explores a different area of the search space and tri...
متن کاملBaldwin Effect based Particle Swarm Optimizer for Multimodal Optimization
Particle Swarm Optimization (PSO) is an effective optimal technique. However, it often suffers from being trapped into local optima when solving complex multimodal optimizing problems due to its inefficient exploiting of feasible solution space. This paper proposes a Baldwin effect based learning particle swarm optimizer (BELPSO) to improve the performance of PSO when solving complex multimodal...
متن کاملParticle Swarm Optimization with Hybrid Jumps for Multimodal Function Optimization ⋆
Particle Swarm Optimization (PSO) has shown good performance in many optimization problems. However, it easily falls into local optima and suffers from premature convergence on complex multimodal problems. To help trapped particles escape from local minima, a novel hybrid jumps strategy is proposed. The main idea of the new jump strategy is to monitor the changes of previous best particle and t...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملAdaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization
This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighbourhood best values, for solving multimodal optimization problems. In the proposed speciesbased PSO (SPSO), the swarm population is divided into species subpopulations based on their similarity. Each species is grouped around a dominating particle called the species seed. At each iteratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2013
ISSN: 1875-6891,1875-6883
DOI: 10.1080/18756891.2013.807108